那么接下来就让小编给大家带来 函数的奇偶性公式 ,希望对同学们的学习能有所帮助! 首先铭记奇函数的定百义公式,偶函数的定义公式。 然后1和2中的式子变化一下...
初中函数及高中函数的发展:
对数函数的定义(必修二P15):
对数的运算:
公式推导:
要记住的运算技巧:
对数函数经常考察地点:底数真数互换为倒数。
对数函数定义的考察题型:
对数函数的函数图象:对数函数和指数函数一样:既不是奇函数也不是偶函数,因此考察时会加绝对值。
反函数定义:两个函数的x和y值互换,即一个函数的定义域为另一个函数的值域,另一个的函数值域为此函数的定义域,两者是关于y=x对称,因此两函数互为反函数。
例题1
底数比较大小
比较数值大小:
达标检测:
综合检验
对数型复合函数考察题型:利用换元法,利用同增异减。
大题:解题思路:认清x定义域的含义;换元必换限;转化为t的最值的问题。
收工,Get?。
如果小伙伴们觉得此技巧对你有帮助的话,欢迎在下方留言、点赞、转发给更多的朋友!